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Development of a Digital Stethoscope for Enhancing Real-
Time Respiratory Diagnostics 
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Izanoordina Ahmad*, Siti Marwangi Mohamad Maharum* and Sairul Izwan Safie**. 

Abstract: Digital stethoscopes represent a significant advancement in medical 
diagnostics, addressing the limitations of traditional auscultation methods, which often 
suffer from diagnostic delays and inefficient workflows. This digital stethoscope 
facilitates real-time diagnosis through machine learning and remote monitoring, utilizing 
the ESP32’s ADC and Wi-Fi capabilities to wirelessly send audio data to a remote 
server for comprehensive analysis. By integrating modern technologies such as the 
ESP32 microcontroller and the MAX9814 microphone module, these devices capture 
and transmit high-fidelity respiratory sounds, overcoming the challenges of imprecision 
and time lag in conventional methods. Initial tests have demonstrated the device's ability 
to capture clear respiratory sounds, underscoring its potential for effective remote health 
monitoring and telemedicine. These improvements aim to enhance diagnostic accuracy, 
facilitate early diagnosis, and ultimately improve patient outcomes, showcasing the 
significant potential of digital stethoscopes to transform respiratory diagnostics and 
patient care, particularly in remote and telemedicine settings. In this research, a 
prototype of a digital stethoscope for respiratory diagnostics was developed and 
evaluated. The obtained results from the prototype measurements demonstrated that the 
proposed system could be a solid starting point for the actual implementation of an 
advanced respiratory monitoring system. 
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1  Introduction 

ESPIRATORY diseases pose a major global health 
challenge, impacting millions of individuals 

worldwide. These conditions affect the lungs and other 
parts of the respiratory system, resulting in serious 
health complications. Accurate and timely diagnosis is 
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crucial for effective treatment and management of these 
diseases [1]. The integration of digital technologies into 
healthcare represents a transformative shift in medical 
diagnostics and patient care, effectively tackling long-
standing challenges in respiratory diagnostics such as 
delays and inefficiencies associated with traditional 
auscultation methods. Digital stethoscopes have emerged 
as a ground breaking innovation, harnessing the power 
of advanced microcontrollers and sensor technologies to 
enhance diagnostic accuracy and facilitate remote 
monitoring. With the increasing use of machine learning 
and neural network algorithms, these devices offer 
significant improvements in diagnostic capabilities and 
the potential for timely and effective intervention [2-3]. 

The development of a digital stethoscope specifically 
designed for respiratory diagnostics holds considerable 
promise for advancing patient care, particularly within 
telemedicine and remote healthcare contexts. This 
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research aims to enable remote patient monitoring, 
allowing healthcare providers to assess respiratory health 
from a distance and supporting early detection and 
intervention for respiratory conditions. The integration 
of machine learning algorithms further boosts diagnostic 
accuracy and efficiency, contributing to improved 
patient outcomes and more proactive management of 
respiratory health. 

A review of recent studies on digital stethoscopes 
highlights both advancements and limitations within the 
field. Sowrav Chowdhury et al. (2022)[4] explored self-
assembled stethoscopes equipped with an electret 
condenser microphone and AI-based diagnostics. While 
their approach showed promise in terms of AI 
integration, it was hindered by the lack of signal 
amplification and real-time audio output for healthcare 
providers, limiting data presentation to waveform 
representation only. R. Chitra et al. (2023)[5] developed 
a digital stethoscope utilizing a NodeMCU ESP8266 and 
a CNN model, achieving an impressive 95% accuracy in 
lung sound monitoring. However, this system faced 
issues related to cloud dependency and the absence of 
real-time audio output, which could impact its practical 
utility. Muhammad Waqar et al. (2019)[6] designed a 
stethoscope based on Arduino DUE that provided high-
quality audio and real-time graphical display but lacked 
diagnostic capabilities and digital data output, restricting 
its use to visual monitoring only. P.-W. Lo Frank et al. 
(2017)[7] developed a Bluetooth-powered wearable 
stethoscope using ATmega328P, offering long-distance 
monitoring and robust data storage capabilities but 
lacking diagnostic functionalities. 

This research presents the development of a prototype 
digital stethoscope for respiratory diagnostics, utilizing 
the ESP32 microcontroller and MAX9814 microphone 
module, which effectively addresses diagnostic delays 
and precision issues inherent in traditional auscultation 
methods. By leveraging neural networks, the system 
accurately analyzes respiratory sounds and detects 
abnormalities, offering a robust solution for respiratory 
health monitoring and early intervention. To mitigate 
limitations related to real-time audio output and cloud 
dependency, the study proposes a dedicated web-based 
platform for real-time audio streaming and analysis, 
ensuring healthcare providers can access critical audio 
data efficiently. To overcome the limitations associated 
with real-time audio output due to cloud dependency, the 
research proposes the implementation of a dedicated 
web-based platform. This platform will facilitate real-
time audio streaming and analysis, ensuring that 
healthcare providers can access critical audio data 
without relying solely on cloud services. Additionally, 
the study outlines future research directions and 
potential applications, highlighting the transformative 

potential of this digital stethoscope system for enhancing 
patient care and advancing respiratory diagnostics. By 
integrating these advancements, the digital stethoscope 
aims to improve diagnostic accuracy and efficiency in 
clinical settings. 

2 Methodology 

The research methodology comprises the process flow, 
block diagram, flowchart, and circuit diagram of the 
research. The process flow of the digital stethoscope 
research, as depicted in Fig. 1, consists of several key 
stages: Data Acquisition, Pre-processing, Data Training, 
Feature Extraction, and Output Classification. Each 
stage is integral to ensuring accurate and effective 
analysis of respiratory sounds for diagnostic purposes. 

2.1 Data Acquisition 
The process begins with data acquisition, where raw 

audio data is collected from the stethoscope. This stage 
involves recording the respiratory sounds using the 
digital stethoscope equipped with the MAX9814 
microphone module. The high sensitivity and automatic 
gain control (AGC) of the MAX9814 ensure that even 
subtle respiratory sounds are captured accurately. 

2.2 Pre-processing 
Once the raw audio data is collected, it moves to the 

pre-processing stage. This crucial step involves several 
sub-processes: 
• Filtering: Noise removal techniques are applied to 

eliminate any unwanted background noise that 
might have been captured along with the respiratory 
sounds. 

• Data Cleaning: This involves removing any 
artifacts or irregularities in the data to ensure it is 
clean and reliable for further processing. 

• Data Type Conversion: The audio data may need to 
be converted into a suitable format or type that can 
be processed by the subsequent stages. 

2.3 Data Training 
In the data training stage, the pre-processed data is 

split into different subsets for training, validation, and 
testing purposes. This step is essential for building and 
evaluating the neural network model. The data is split 
into the following proportions: 80% for the Training Set 
to train the neural network model, 10% for the Test Set 
to evaluate the model's performance and accuracy, and 
10% for the Validation Set to fine-tune the model and 
prevent overfitting. These specific percentages are based 
on common practices in machine learning. 

The model used in this research is a Convolutional 
Neural Network (CNN), which is well-suited for 
analyzing and classifying respiratory sounds. The CNN 
model consists of multiple convolutional layers that 
extract features from the input data, followed by pooling 
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layers that reduce the dimensionality of the feature 
maps. The extracted features are then passed through 
fully connected layers that perform the final 
classification task. The model is trained using 
backpropagation, which adjusts the weights and biases 
of the network to minimize the loss between the 
predicted and actual outputs. 

The 80% training set is used to train the CNN model, 
which is sufficient for the model to learn the patterns and 
relationships in the respiratory sound data. The 10% test 
set is used to evaluate the model's performance and 
accuracy, providing an unbiased estimate of the model's 
ability to generalize to new, unseen data. The 10% 
validation set is used to fine-tune the model's 
hyperparameters, such as the learning rate, batch size, 
and number of epochs, to prevent overfitting. By 
monitoring the validation set performance during 
training, the model can be optimized to achieve the best 
balance between training set performance and 
generalization to new data.  
For audio data, the process involves transforming audio 
signals into a format suitable for CNNs, often by 
representing them as Mel-Frequency Cepstral 
Coefficients (MFCCs). MFCCs are features derived 
from the audio signal that represent the short-term power 
spectrum of a sound. They can be used as input to CNNs 
for audio classification tasks. 

2.4 Feature Extraction 
Feature extraction is a critical stage where meaningful 

features are extracted from the audio data to be used by 
the neural network for classification. In this research, 
Mel-Frequency Cepstral Coefficients (MFCC) are used 
to recognize the audio. The Mel-Frequency Cepstral 
Coefficients (MFCC) method is a widely adopted and 
prominent approach for extracting features from audio 
signals, and ongoing research is focused on improving 
its performance. In fact, the majority of speaker 
identification systems rely on MFCC as their primary 
feature extraction technique [8]. These coefficients 
represent the short-term power spectrum of the sound 
signal and are widely used technique in audio processing 
and speech recognition tasks [1]. They help in capturing 
the essential characteristics of the respiratory sounds. 

2.5 Output Classification 
The final stage is output classification, where the 

neural network classifies the respiratory sounds into 
different categories based on the extracted features. The 
classes for the outputs include: 
• Healthy 
• Chronic Obstructive Pulmonary Disease (COPD) 
• Upper Respiratory Tract Infection (URTI) 
• Lower Respiratory Tract Infection (LRTI) 
• Asthma 
• Bronchiectasis 

• Pneumonia 
• Bronchiolitis 
 

In medical scenario, the goal is to detect and classify 
various diseases or conditions, with the healthy class 
serving as a baseline [9]. The classification results are 
displayed in the terminal window on a laptop, providing 
real-time diagnostic information. This information can 
be used by healthcare professionals to identify and 
diagnose respiratory conditions promptly and accurately. 
However, when a new input lies outside of the 
predefined classes, several things could happen. The 
neural network may misclassify the input into one of the 
existing classes, leading to incorrect diagnosis or 
treatment [10]. Alternatively, the network may output a 
probability distribution that is uncertain or ambiguous, 
indicating that the input does not fit neatly into any of 
the predefined classes [11]. If the network is trained with 
an out-of-distribution detection mechanism, it may 
recognize that the new input is outside of the training 
data distribution and flag it as an anomaly or unknown 
class [10].  

 

 
 

Fig 1.  Process Flow of the Research 

As shown in Fig. 1, the process flow outlines the 
proposed proof-of-concept development of a digital 
stethoscope for respiratory diagnostics using the ESP32 
microcontroller and MAX9814 microphone module. The 
system captures respiratory sounds via the microphone 
module, which are then processed and transmitted by the 
ESP32 to a remote server for analysis. The digital 
stethoscope operates by using the MAX9814 
microphone module to capture respiratory sounds, which 
are converted to digital data by the ESP32's analog-to-
digital converter (ADC). This data is then sent wirelessly 
to a developed Flask remote server via Wi-Fi using the 
HTTP/HTTPS protocol for storage and further analysis. 
Flask is a web framework written in Python. It’s 
designed to be simple and flexible, allowing developers 
to build web applications with minimal setup and 
configuration. The server uses advanced algorithms to 
analyze respiratory sounds and detect any abnormalities. 
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2.6 System Architecture and Workflow  
As shown in Fig. 2, the block diagram of the proposed 

digital stethoscope system includes three main 
components: the input stage, the processing stage, and 
the output stage. Each of these components plays a 
crucial role in capturing, processing, and displaying 
respiratory sounds for diagnostic purposes. 
 
Input Stage: 
The input stage begins with the stethoscope, which is 
used to capture respiratory sounds from patients. This 
device functions as an acoustic sensor, detecting the 
subtle sounds produced within the respiratory system. 
These sounds are then directed to the MAX9814 
microphone module. The MAX9814 is a sophisticated 
electret microphone amplifier equipped with automatic 
gain control (AGC). The AGC is crucial for ensuring 
that even the faintest respiratory sounds are amplified 
and captured with high clarity. This module converts the 
acoustic signals into electrical signals that can be 
processed by the subsequent stage in the system. 
 
Processing Stage: 
At the core of the digital stethoscope system is the 
ESP32 microcontroller, which serves as the primary 
processing unit. The main advantages of the ESP32 is 
renowned for its powerful processing capabilities and 
versatile features, including an integrated Analog-to-
Digital Converter (ADC). The electrical signals received 
from the MAX9814 are fed into the ESP32, where the 
ADC digitizes these analog signals into a format suitable 
for digital processing [12]. The ESP32 then processes 
these digital signals, performing tasks such as filtering 
and feature extraction. Additionally, the ESP32’s built-in 
Wi-Fi capability enables it to transmit the raw data to a 
remote server for further analysis. 
 
Output Stage: 
The final stage of the system involves displaying the 
processed respiratory sound data on a laptop’s terminal 
window. This terminal window acts as a real-time 
interface for monitoring and visualizing the captured 
sounds. The data is transmitted from the ESP32 to the 
laptop via Wi-Fi, where it is received and displayed in a 
format that allows even individuals with less knowledge 
of healthcare to observe the disease classification for the 
sound. This setup enables immediate access to the sound 
data, facilitating quick diagnostic assessments and 
continuous monitoring. By leveraging the capabilities of 
modern microcontrollers and advanced signal processing 
techniques, this digital stethoscope system enhances the 
accuracy and timeliness of respiratory diagnostics, 
providing a robust solution for patient care and early 
intervention. 
 

 
Fig 2. Block Diagram of the Hardware 

 
As shown in Fig.3, the stethoscope will be connected 

to the microphone MAX9814 using a shrink tube to fit 
the mic into the stethoscope cord, and the pinout of the 
MAX9814 will be connected to the ESP32. Then the 
ESP32 will be connected to the desktop to run the code 
and server. 

 
Fig 3. Circuit Diagram (Controller) 

 

Fig 4. Complete Hardware of the Research 
 

There are three sets of components in Fig. 4 which 
include a microphone amplifier module (MAX9814), a 
processor (ESP32), a desktop (laptop or PC), and the 
power comes from the desktop. Therefore, only one 
socket outlet is used. Any fault with the component can 
be detected using the desktop with different codes to test 
the components. This customized approach guarantees 
that any problems arising from either GPIO or power 
can be quickly located and fixed, improving the overall 
dependability. 

Stethoscope 
Head 

Microcontroller 
ESP 32 

MAX9814 
Microphone 
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2.7 Acquisition Method  
The sequential or single-channel acquisition method 

involves using one microphone to capture audio data 
from different locations on the chest sequentially. This 
approach contrasts with multichannel acquisition, where 
multiple microphones record simultaneously from 
various locations [13]. In the single-channel method, the 
microphone is placed at a specific chest location, and the 
lung sounds are recorded continuously. If the sound is 
not properly recorded or unclear, the microphone is then 
moved to the next location, and the process is repeated. 
This method is more straightforward and cost-effective 
than simultaneous acquisition but requires careful 
handling to ensure consistent and comparable recordings 
from each location. Lung sounds are typically recorded 
from specific anatomical locations on the chest to 
capture the full range of respiratory sounds. The 
following chest locations were used in this research: 
 
• Trachea (Tc): The trachea is the large airway that 

conducts air from the larynx to the bronchi. 
Recording from the trachea captures breath sounds 
directly from the upper respiratory tract, which are 
generally louder and more turbulent. 

• Anterior Left (Al): This location is on the left front 
side of the chest, overlying the left lung. Sounds 
recorded here primarily capture the sounds 
generated in the left lung's upper lobe. 

• Anterior Right (Ar): Similar to the Anterior Left, 
this location is on the right front side of the chest, 
capturing sounds from the right lung's upper lobe. 

• Posterior Left (Pl): This location is on the back of 
the chest, over the left lung. Posterior recordings are 
essential for capturing sounds from the lower lobes 
of the lungs, which are crucial in diagnosing 
conditions like pneumonia. 

• Posterior Right (Pr): Located on the back of the 
chest over the right lung, this site captures sounds 
from the right lung's lower lobes. 

• Lateral Left (Ll): This location is on the left side of 
the chest. Lateral recordings help capture sounds 
from both the upper and lower lobes of the lungs, 
providing a comprehensive assessment of lung 
function. 

• Lateral Right (Lr): Similar to the Lateral Left, this 
location is on the right side of the chest and captures 
a broad range of lung sounds from the right lung. 

2.8 Sampling Rate 
For the dataset used in training, the sampling rate is set 

at 16,000 Hz (16 kHz)[14]. This decision was made to 
ensure consistency between the data used for training 
and the real-time data captured during the research's 
deployment. By using a uniform sampling rate, the 
model can better interpret and analyse the audio signals, 
leading to more accurate predictions and classifications 

of respiratory sounds. The 16 kHz sampling rate is well-
suited to capturing the key frequency range of 
respiratory sounds, ensuring that the model is trained on 
data that reflects the actual conditions it will encounter 
in practice. 

As shown in Fig. 5, the operation starts when the 
software program is executed on the ESP32 
microcontroller. Once the system is powered on, the 
ESP32 will be connected to the Wifi to transmit the data, 
and the MAX9814 microphone module begins capturing 
respiratory sounds. The ESP32 processes these sounds 
and converts them from analog to digital data. If the 
sounds detected indicate any abnormalities, the data is 
transmitted to the remote server. The server, preloaded 
with the machine learning model, then analyzes the data, 
and the results are used to inform healthcare providers 
through a monitoring interface. This setup allows for 
real-time analysis and remote monitoring of respiratory 
health. 
 

 
Fig 5. Flowchart of the Software Workflow 

 
If the respiratory sounds are within normal parameters, 

the system continues to collect and transmit data to the 
server for continuous monitoring. This ensures that any 
potential issues can be detected early, and healthcare 
providers are alerted promptly via the monitoring 
interface, enhancing the efficiency and reliability of 
respiratory diagnostics [15]. In this way, the proposed 
digital stethoscope system aims to provide a more 
precise and timely diagnosis of respiratory conditions, 
leveraging modern microcontroller technology and 
advanced signal processing techniques. The integration 
with neural networks further enhances the system's 
capability to accurately analyze respiratory sounds and 
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detect abnormalities, offering significant potential for 
improving patient care and facilitating early 
intervention. 

 

3 Results and Discussion 

 This research was developed to establish a system that 
can accurately capture and analyse respiratory sounds 
for medical diagnostics. The primary objectives are to 
design a digital stethoscope integrated with a neural 
network capable of detecting abnormalities in respiratory 
sounds, to develop a working prototype for clinical 
testing and validation, and to implement an IoT 
application that enables real-time monitoring of 
respiratory health for healthcare providers [16]. Fig. 6 
displays the training and validation loss against the 
number of epochs. The x-axis represents the epochs, 
which denote the number of complete passes through the 
entire training dataset. The y-axis measures the loss, a 
metric that quantifies the error between the model’s 
predictions and the actual values.  

The red line on the graph traces the training loss, while 
the blue line traces the validation loss. At the outset, 
both training and validation losses are high, indicating a 
significant error in the model’s initial predictions. 
However, as the epochs progress, both losses decrease 
rapidly, showcasing the model’s learning capability. The 
training loss continues to decrease and eventually 
stabilizes at a low value. This indicates that the model is 
effectively minimizing error on the training dataset, 
achieving a high degree of fit. Simultaneously, the 
validation loss follows a similar trend, decreasing and 
stabilizing at a point closely aligned with the training 
loss. This close alignment between training and 
validation loss suggests that the model generalizes well 
to unseen data, avoiding the common pitfall of 
overfitting [17]. 

 
Fig 6. Training and Validation Loss for Machine Learning 

Model 
Fig. 7 presents the training and validation accuracy, 

showing a consistent improvement in accuracy across 

the 300 epochs. The final accuracy reaches 0.99, 
demonstrating the model's high capability in correctly 
identifying respiratory sound patterns and detecting 
abnormalities. This high accuracy is crucial for ensuring 
reliable diagnostics and effective monitoring of 
respiratory health. The disparity in the accuracy and loss 
values between training and validation data can be 
attributed to the quality and quantity of the training data, 
as well as the optimization of neural network 
parameters. The high accuracy achieved suggests that 
the neural network model is well-suited for the task of 
analyzing respiratory sounds and providing accurate 
diagnostic information. The results indicate that the 
developed digital stethoscope system, integrated with a 
neural network, performs exceptionally well in 
analyzing respiratory sounds. This system holds 
significant promise for enhancing respiratory 
diagnostics, enabling early detection of abnormalities, 
and improving patient outcomes through timely 
intervention. 

 
Fig 7. Training and Validation Accuracy for Machine Learning 

Model 
 

Fig. 8 shows the confusion matrix for the neural 
network's predictions on the test data. The confusion 
matrix includes the following classes: asthma, 
bronchiectasis, bronchiolitis, COPD, healthy, LRTI, 
pneumonia, and URTI. The high accuracy observed in 
the confusion matrix results from up sampling, which 
was employed to counter the dataset's class imbalance. 
This technique ensures that the model is trained equally 
across all classes, thereby improving its ability to 
correctly classify each condition. The confusion matrix 
highlights the model's performance [18] in 
differentiating between various respiratory conditions, 
demonstrating high precision and recall across most 
classes. This is indicative of the model's robustness and 
its potential utility in clinical settings for accurately 
diagnosing respiratory conditions. 

The provided ROC curve in Fig. 9 plot serves as a 
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comprehensive evaluation of a multi-class classification 
model, detailing its proficiency in distinguishing 
between several classes: Asthma, Bronchiectasis, 
Bronchiolitis, COPD, Healthy, LRTI, Pneumonia, and 
URTI. This visualization employs several key elements 
to effectively communicate the model's diagnostic 
capabilities. The axes are fundamental to interpreting the 
plot. The x-axis represents the False Positive Rate 
(FPR), defined as the proportion of negative instances 
incorrectly classified as positive. Meanwhile, the y-axis 
denotes the True Positive Rate (TPR), also known as 
sensitivity or recall, which measures the proportion of 
actual positive instances correctly identified by the 
model. These metrics collectively provide insight into 
the model's accuracy and reliability. 

 

 
Fig 8. Confusion Matrix 

 
At the heart of the plot is the Receiver Operating 

Characteristic (ROC) curve, a graphical representation 
illustrating the diagnostic ability of a classifier as its 
discrimination threshold varies. For multi-class 
classification problems, the ROC curve is plotted for 
each class versus all others using a one-vs-all approach. 
This method allows for a detailed evaluation of the 
model's ability to differentiate each specific class from 
the rest. A critical reference point in the plot is the 
dashed diagonal line, stretching from the bottom-left to 
the top-right, representing the performance of a random 
classifier. Any ROC curve positioned above this line 
indicates a model performing better than random 
guessing, providing a benchmark for comparison. 

Each colored line on the plot represents the ROC curve 
for a different class. The accompanying legend provides 
the Area Under the Curve (AUC) for each class's ROC 
curve. The AUC is a singular value summarizing the 
classifier's overall performance, with an AUC of 1 

indicating perfect classification.  In this particular plot, 
each class achieves an AUC of 1.00. This perfect score 
signifies that the classifier can flawlessly distinguish 
each class from the rest, achieving perfect sensitivity and 
specificity. The ROC curves for all classes converge at 
the top-left corner of the plot, reflecting a 100% true 
positive rate (TPR = 1) without any false positives (FPR 
= 0) for each class. 

The ROC curve plot demonstrates an exemplary 
performance by the multi-class classification model [19-
20]. Each class's ROC curve aligns with the top-left 
corner, indicating flawless classification with perfect 
sensitivity and specificity. The AUC score of 1.00 for 
each class further underscores the model's impeccable 
ability to differentiate between various classes without 
errors. This ideal outcome, while rare in practical 
scenarios, suggests a highly effective and reliable 
classifier, capable of precise distinctions between 
different conditions and healthy states. 

 
Fig  9. ROC curve (receiver operating characteristic curve) 

 
Fig. 10 shows the output received in classification. The 

ESP32 will be connected to the internet first and print a 
response whether the Wifi is successfully connected. 
Then it will read the analog value and connect to the 
server via HTTP response to send the data. If the 
connection to the server fails, it will print “Failed to 
connect to the server. Please check the server URL and 
network connection.” The terminal window then prints 
the response received from the server which is the output 
classification. 

 

 
Fig 10. Output Received in Terminal Window 

 
Fig. 11 demonstrates the successful data processing carried 

out by the Flask server. This figure confirms that data from the 
hardware has been successfully transmitted to the server. The 
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Flask server, which is preloaded with a machine learning 
model and audio processing capabilities, is designed to handle 
the newly received raw data efficiently. When the hardware 
sends data to the server, the server performs several crucial 
functions. First, it processes the raw data using audio 
processing algorithms. This step is essential for preparing the 
data for analysis by the machine learning model. The server 
then uses the machine learning model to analyze the processed 
data, giving out the output in the form of disease classification. 
The Flask server provides an IP address, which is a crucial 
feature for several reasons. By clicking on this IP address, 
users can verify that the server is still up and running. This 
ability to check the server's status ensures that the data 
processing pipeline remains operational, allowing for 
continuous monitoring and real-time data analysis. 
 

 
Fig 11. Data Log in the Server 

 
As shown in Fig. 12, “Digital Stethoscope” was written on 

the web of the server. This confirmation indicates that the 
Flask server is up and running, accessible via the IP address 
provided in the command prompt during the server's initiation. 
Utilizing this Flask server offers significant advantages in 
handling data transmission. Instead of relying solely on the 
ESP32 microcontroller, which has limited memory capacity, 
the Flask server can manage and transmit larger volumes of 
data. The ESP32, while powerful and versatile for many 
embedded applications, may struggle with extensive data 
processing or storage due to its constrained memory resources. 

By offloading the data transmission tasks to the Flask server, 
you can achieve enhanced data handling, allowing the server to 
manage larger datasets, perform more complex data 
processing, and store more information than the ESP32 could 
manage on its own. This setup offers scalability, as the Flask 
server can accommodate increasing amounts of data and more 
complex processing needs without being limited by the 
hardware constraints of the ESP32. Performance is also 
improved, as delegating data-intensive tasks to the server lets 
the ESP32 focus on its core functions, such as data collection 
and basic processing, leading to more efficient overall system 
performance. 

Moreover, the Flask server can be accessed remotely through 
the provided IP address, enabling real-time monitoring, 
control, and data acquisition from anywhere with internet 
access. This setup also offers flexibility in development, as 
Flask, being a lightweight web framework, allows for easy 
development and integration of web-based interfaces, APIs, 
and data management tools, enhancing the functionality of the 
digital stethoscope system. In summary, deploying the Flask 
server to handle data transmission significantly enhances the 
capabilities of the digital stethoscope system, overcoming the 

memory limitations of the ESP32 and providing a robust 
platform for scalable and efficient data management. 

 

 
Fig 12. Text in the Web of the Flask Server 

 
As long as the server is running, diagnostic processes can be 

carried out using the "curl" command in another command 
prompt window. Fig. 13 illustrates this process, demonstrating 
how the "curl" command can be utilized to diagnose a file 
located at a specified path. The "curl" command is a powerful 
tool used for transferring data to or from a server using various 
protocols. In this context, it facilitates communication with the 
Flask server, allowing users to send data for diagnosis and 
receive the results. To use the "curl" command for diagnosis, 
ensure that the file to be diagnosed is saved at the specified 
path on your system. This file contains the raw data that needs 
to be analyzed by the server. The "curl" command must be 
customized to match the file name and path. This 
customization involves specifying the correct file location and 
ensuring that the command points to the appropriate endpoint 
on the Flask server. 

The process begins by invoking the "curl" command in a 
command prompt window. The command includes options and 
parameters that define the method of data transfer and the 
target URL, which is the Flask server's endpoint for diagnosis. 
By providing the path to the file and any necessary headers or 
data fields, the "curl" command sends the file to the server for 
processing. Once the server receives the file, it processes the 
data using its preloaded machine learning model and audio 
processing algorithms. The server then returns the results of the 
diagnosis, which can be viewed directly in the command 
prompt. This method allows for efficient and straightforward 
data submission and result retrieval without needing a web 
interface. 

The “curl” command is a versatile tool that enables efficient 
communication with the Flask server for diagnostic purposes. 
Using the "curl" command for diagnosis offers several 
advantages. It provides a simple and scriptable way to interact 
with the server, making it easy to automate the diagnostic 
process or integrate it into larger workflows. Additionally, it 
allows for quick verification of the server's functionality and 
ensures that the diagnostic capabilities remain accessible as 
long as the server is running. The "curl" command enables 
efficient communication with the Flask server for diagnostic 
purposes. By customizing the command to include the correct 
file path and server endpoint, users can submit files for 
diagnosis and receive results directly in the command prompt. 
This approach simplifies the diagnostic process, making it 
accessible and easy to automate. 
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Fig 13. Diagnose the Audio File with Path Using Command 

Prompt 

4. Conclusion & Recommendations 
 

In this research, a prototype digital stethoscope for 
respiratory diagnostics was developed and evaluated. 
The prototype demonstrated strong potential as a 
foundational tool for implementing an advanced 
respiratory monitoring system. It effectively tackled 
critical issues such as diagnostic delays, treatment lags, 
and the limitations of traditional auscultation methods. 
The research’s development holds promise for accurate 
analysis and identification of respiratory conditions, 
thereby reducing health risks and improving patient 
outcomes. By integrating machine learning algorithms 
and real-time monitoring capabilities, the system 
provides clear visibility into patients' respiratory health, 
facilitating early detection and timely intervention. 
However, future developments should focus on 
overcoming the current limitations of the system, 
including the need for quiet environments for audio 
recording, internet connectivity for server processing, 
and accurate placement of the stethoscope. The accurate 
analysis of lung sounds is crucial for diagnosing 
respiratory diseases, and advances in respiratory sound 
signal processing techniques have improved the 
detection of various conditions. Efforts should be made 
to collect a more accurate and balanced dataset to 
improve the system's performance and reduce class 
imbalance. In conclusion, the development and 
evaluation of the digital stethoscope prototype for 
respiratory diagnostics have shown that it effectively 
addresses key challenges such as diagnostic delays and 
the imprecision of traditional methods. By integrating 
advanced signal processing and machine learning 
algorithms, the system enables accurate and timely 
analysis of respiratory sounds. It facilitates real-time 
monitoring and continuous data transmission to a remote 
server, allowing for early detection of abnormalities and 
prompt healthcare provider alerts. This approach 
significantly improves diagnostic accuracy and patient 
outcomes, making it a promising solution for enhancing 
respiratory health monitoring and enabling timely 
interventions. 
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